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Abstract--Experiments are performed to measure the thickness of  a thin liquid film formed between a 
free surface and the apex of  a bubble which is approaching at its terminal velocity. Measurements are 
made using bubbles of  < 1 mm dia both in distilled water and alcoholic solutions (methanol, ethanol). 
The results of  the experiments show that the models based on the lubrication approximation fail to 
predict the initial stage of  drainage. A better agreement is obtained by modifying the model proposed 
by Chesters. 
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1. I N T R O D U C T I O N  

The coalescence of bubbles plays an important part in many areas of interest to industry. It leads 
to a decrease in interfacial area in mass transfer equipment (e.g. bubble columns and air-lift 
reactors). In two-phase flow in pipes, the transition between bubble and slug flows depends on 
coalescence. A basic idea often used to model the coalescence process is to compare the time it 
takes to thin the intervening film between two bubbles (or two drops) to the rupture thickness with 
the contact time between these two bubbles (or two drops); see, for example: Thomas (1981) for 
bubbles; and Coualaloglou & Tavlarides (1977) and Das et al. (1987) for drops. 

There exist numerous theoretical and experimental investigations appertaining to the film 
drainage, particularly for foam films. For a recent review see, for example, Ivanov & Dimitrov 
(1988); and for more recent works: Hahn et al. (1985), Oolman & Blanch (1986), Chen& Slattery 
(1988), Davis et al. (1989), Yiantsios & Davis (1990) and Prince & Blanch (1990a). Most of the 
models of the aforementioned studies are based on the lubrication approximation theory, namely 
the quasi-static assumption which neglects the inertia terms in the equations of motion. But for 
other authors, the viscosity is not the main factor and can even be neglected. Here drainage times 
are predicted to be several orders of magnitude shorter. In fact, the choice of the leading terms 
in the governing equations is connected with the boundary conditions at the film surfaces which 
can be tangentially mobile or immobile in the presence of surfactant. 

For non-foaming liquids, not many experimental data are available. Most experimental studies 
involve the observation of a large population of bubbles and knowledge of the coalescence process 
is only indirect via interfacial area or hold-up. For solutes like electrolytes or organic compounds 
like alcohols, the main feature is that there is a sharp transition between the quick coalescence 
which occurs in pure water and a coalescence inhibition which takes place in a narrow 
concentration range (Zieminski & Whittemore 1971; Keitel & Onken 1982; Prince & Blanch 1990b). 
Direct study of coalescence is easier with measurement on an isolated bubble pair, or with a bubble 
approaching a free surface. With two bubbles growing side by side at the tip of two capillary tubes, 
it is possible to obtain a coalescence probability from the percentage of pairs of bubbles which 
coalesce before their detachment from the tubes (Lessard & Zieminski 1971; Kim & Lee 1988). The 
coalescence time is then defined as the lifetime of the lamella created between the two bubbles 
(Nicodemo et al. 1972; Sagert et al. 1976; Drogaris & Weiland 1983; Yang & Maa 1984). The 
film thicknesses can also be measured by the technique described herein (Allan et al. 1961; 
Cain & Lee 1985). 
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Various theories have been proposed to explain the effect of  solutes: a gradient of surface tension 
which imparts a partial immobility to the interface (Lee & Hodgson 1968); an increase in surface 
tension due to stretching (Andrew 1960) which can be relaxed by a diffusion process at the film 
border (Marrucci 1969); and structural changes in the solvent water caused by dissolved electrolytes 
(Zieminski & Whittemore 1971). The variation of  the critical thickness at which the film breaks 
may be also invoked (Ruckenstein & Sharma 1987; Sharma & Ruckenstein 1987). 

Owing to the diversity of theoretical assumptions, it is necessary to obtain a more complete data 
set on the drainage process, such as rate of thinning and rupture thickness, and to compare these 
with the values predicted by the models. For  non-foaming liquids (i.e. when there are no 
double-layer repulsion or steric effects to stabilize the film), the lifetimes of  the lamellae are short 
(<  1 s); in such cases there is a lack of experimental data. Only Cain & Lee (1985), to our 
knowledge, have reported thickness measures on fast drainage of a film between two captive 
bubbles in KCI solutions. In addition, the experiments of Kirkpatrick & Lockett (1974) have 
demonstrated that the approach velocity is an important factor in limiting bubble coalescence. 

In order to investigate the applicability of the models in the literature for non-foaming liquids 
and for bubbles having a definite approach velocity, we describe an apparatus to measure the 
thickness of  the film between a free surface and the apex of a bubble approaching at its terminal 
velocity. Measurements are then made using distilled water and alcoholic solutions (methanol, 
ethanol). The inhibition of coalescence by these alcohols has already been studied in bubble 
columns (Keitel & Onken 1982) or with contacted pairs of bubbles (Sagert et  al. 1976; Drogaris 
& Weiland 1983). The aim of the present work is to determine whether the inhibition is due to 
slower rate of drainage, smaller thickness of rupture or greater stability of the surfaces of the 
intervening film with addition of alcohol. The results show that both the drainage and rupture are 
more complex that one would expect. 

2. E X P E R I M E N T  

The thickness measurement is based on the examination of interference fringes shifts. The 
technique is similar to that used by Allan et  al. (1961). 

A bubble is formed in a beaker at the tip of a capillary tube by blowing nitrogen from a gas 
bottle at a rate of  < 1 bubble/s (figure 1). The tip is approx. 5 cm below the surface. The tube is 
fixed onto an arm which can be accurately positioned on the optic axis of a metallurgical 
microscope by means of micrometer screws. The volume of the bubbles can be well-reproduced 
and is determined by collecting a fixed number of  bubbles with a calibrated pipette. Different 
bubble volumes are obtained by changing the capillary. 
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Figure I. Experimental apparatus: C, capillary tube; D, 
diaphragm; Di, photodiode; F~,F2, interference filters; 
PM~, PM 2, photomultiplier tubes; S, beam splitter; L, mer- 

cury vapour lamp; He-Ne, laser beam. 

Table 1. Values of the reflection coefficient R corre- 
sponding to coincidences of maximum or minimum of 

light intensity 

2 =436nm 2 =546nm 2=578nm 
hn (nm) R hn (rim) R hn (nm) R 

0 0 0 0 0 0 
436 0 433 1 
545 1 546 1 
872 0 866 0 

1090 0 1092 0 

h = Film thickness; n = refractive index of the liquid. 



DRAINAGE AND RUPTURE OF A NON-FOAMING LIQUID FILM 785 

Before reaching the surface, a bubble crosses two horizontal parallel beams 2 crn apart. The 
passage through the beams is detected by two photodiodes. The rise velocity is deduced from the 
transit time and thus the value of the bubble volume may be checked since the two are correlated. 

The beaker stays on a platform which is mounted onto a vibration-insulated granite table and 
which can be moved vertically. The free surface lies in the focal plane of the objective lens of  the 
microscope. The surface immobility before the impact of a bubble was controlled by examination 
of a laser beam reflected onto it. 

The source of illumination is a high intensity mercury vapour lamp (200 W). The film 
thickness is deduced from the intensity of the reflected light using the classical formula (Scheludko 
1967): 

I (1 + r 2): sin2 C-n~-~ ) 

n = [11 
/max 1--2r  2cos + r  4 

where 

1 =  reflected intensity, 

/max = maximum reflected intensity, 

r = reflection coefficient of the liquid, 

n = refractive index of the liquid, 

h = film thickness 

and 

2 = wavelength of incident light. 

With a monochromatic light, the intensity I is a periodic function of period 2/2n, and the 
interference order is unknown unless a reference thickness is available. With white light, the 
interference pattern is coloured, and the order may be estimated from standard tables of colours. 
In our experiments, the drainage time is < 5 ms and classic video or cine-cameras cannot be used 
to record the pattern. Also, we choose to analyse the reflected light at two wavelengths 2 and 2' 
with two photomultiplier tubes (PMI, PM2). These wavelengths are selected by two interference 
filters (FI, F2) placed in front of the photomultiplier tubes. For 2, we took the mercury line 436 nm, 
and for 2' we used either 546 nm (2~) or 578 nm (2~). For some thicknesses, the I~ and I~, curves 
go simultaneously through an extremum. The thicknesses corresponding to these coincidences are 
given in table 1 and are used as reference thicknesses. We have observed that the film thickness 
h does not decrease during all of the residence time of the bubble at the free surface, but that the 
bubble has a vertical movement of oscillation after impact at the free surface. Also thinning and 
thickening of the intervening film can alternate. The reversal of the thinning rate appears on the 
intensity curves as an extremum which generally is neither a minimum nor a maximum. For 
example, figure 2 shows the intensities I~, I~i and I~ corresponding to a typical draining curve h(t). 
The reversal at t = tr for hn = 545 nm is obvious for 1~, but if one examines only 1~ or I~i, there 
is a certain ambiguity since this thickness gives a maximum or a minimum for the reflected 
intensities. This is the reason why we simultaneously used two wavelengths with the ability to 
change the interference filters. The currents provided by photomultipliers are converted by an 
operational amplifier to a voltage which is recorded by a digital oscilloscope at a sampling rate 
up to 1 MHz. A circular aperature is placed into the image plane so that the photomultipliers 
receive light from a film area of 10/~m dia. 

Before each experiment, the beaker was soaked in a hot nitric and sulphuric acid mixture. It 
was rinsed several times in tap water and then in distilled water. The free surface was renewed 
by overflowing just before each measurement in order to minimize surface contamination. 
The solutions used were prepared with de-ionized and distilled water and with analytical grade 
reagents. 
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Figure 2. Schematic representation of light intensity curves Ix(t), l~i(t) and la~(t) corresponding to a 
typical drainage curve h(t) (multiplied by the liquid index n); k = 436 nm, 2~ = 546 nm, k~ = 578 nm. 

3. R E S U L T S  

Thickness measurements were made with bubble radii ranging from 0.27 to 0.43 mm, so that the 
rising mot ion is rectilinear and the impact point at the free surface does not randomly change too 
much in the focal plane of  the microscope. 

Bouncing 
Typical intensity curves Ix(t) and Ia,(t) and the deduced thickness vs time curve h(t)  are shown 

in figure 3. One can see that the bubble rebounds twice before bursting. The three interference 
fringes sets are given by the three approaches. The last one results in the film rupture. If the 
residence time is the interval o f  time between the first arrival o f  a bubble at a free surface and its 
bursting, and if the drainage time is the interval o f  time to thin the film from an initial definite 
thickness to the rupture thickness, we see that residence time and drainage time are well-distin- 
guished. 

The number o f  bounces depends on the bubble volume and on the alcohol concentration. With 
distilled water, the bubbles burst at the first contact with the free surface if their diameter is 
~<0.65 mm. Between 0.65 and 1 mm, the bubbles bounce one time and burst at the next approach. 
For a diameter a little greater than 1 mm, the bubbles burst at the third approach. This has been 
already observed by Farooq (1972). Kirkpatrick & Lockett (1974) also noticed that bubbles 
(equivalent dia = 5 mm) sink into the interface without coalescence and then oscillate at the surface 
before finally coalescing. Transitions between bursting and bouncing are not sharp. For a series 
o f  bubbles corresponding to a limit o f  these ranges, we observe that a fraction burst and the 
remainder bounce. The ratio value is very sensitive to the surface contamination. The probability 
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Figure 3. Experimental light intensity curves I~ and 1~, with the deduced thickness; ethanol concen- 
tration = 0 .2  m o l / 1 ,  bubble dia = 0 .85  ram, terminal velocity = 0 .22  m / s .  

of  a rebound increases with the surface ageing. With the addition of alcohol (methanol, ethanol) 
we also observe an increase in the number of bounces and accordingly the residence time is longer, 
as may be seen in figure 4. 

Thickness 

The thickness measurements are very reproducible when the cleaning procedure is repeated 
before each experiment. The results in figure 5 are taken from six runs with distilled water and 
correspond to the first approach. Two bubbles burst during this approach; the other four bounce 
and burst at the next approach. As may be seen, the shape of  the drainage curves remains the same 
whether the film breaks or not. The thickness vs time curves exhibit three stages: a fast drainage; 
a reduced rate and an arrest of  the thinning; and finally, a thickening of  film. The most striking 
observation is that if bursting occurs, the film rupture more often takes place during the last stage 
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Figure 4. Histogram of residence times for aqueous solutions of ethanol; bubble volume = 0.6 mm 3. 

when the thickness is increasing. The thicknesses at the rupture point are large in comparison with 
those observed with foaming liquids. For the six runs in figure 5, the values are 340 and 435 nm 
for the two bubbles bursting at the first impact and range from 110 to 150 nm for the others. We 
have never observed rupture thickness of < 80 nm for our experiments with distilled water and 
alcoholic solutions. If the microscope axis is moved off the centre of the film, the draining curves 
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Figure 5. Film thickness vs time for six runs with distilled water: two bubbles burst (R), the other four 
bounce and burst at the next oscillation; bubble volume = 0.25 mm 3, terminal velocity = 0.19 m/s. 
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F igure  6. C o m p a r i s o n  o f  d ra inage  curves  in dis t i l led wa te r  and  in an  aqueous  so lu t ion  of  e thanol  
( 3 . 4 . 1 0  -~ tool/l) .  In  water ,  the f i lm b reaks  at  t = 18 ms  (upper  curve);  in the a lcohol ic  solut ion,  the bubb le  

burs ts  a t  the next osci l la t ion,  t = 29.5 ms  ( lower curve). I t  is the same run  as in figure 3. 

remain similar. The contrast is conserved when the diameter of the examined area is multiplied by 
four by changing the microscope magnification. Thus, we believe that the thickness is uniform in 
the main part of the film and that perhaps it is thinner at the rim, but it is difficult to obtain 
measurements there on account of the rapid variation of the curvature. It is likely that the thickness 
at the moment of rupture is not the rupture thickness, if the latter means the thickness at the point 
where the film breaks, For foams, during film formation, a stage is often observed where the surface 
acquires a bell-shape form called a dimple. The radial flow in the film then is inverted and the 
thickness increases at the centre while the film thins at the border. 

It must be pointed out that for clean surfaces we do not observe a growth of instabilities with 
measurements performed on an area of 10/~mdia and at a sampling rate of 1 MHz. These 
instabilities are often postulated to explain the rupture. 

When either methanol or ethanol are added in low concentration (3.4.10 -3 mol/l), such that 
the physical properties like density, viscosity, surface tension are little affected, the film behaves 
in the same way as for contaminated water: the drainage curves are the same as for distilled water 
but instead of observing the film rupture one can see, in figure 6, that the film continues to thicken; 
the bubble bounces and the rupture occurs at the next approach. Thus, the coalescence inhibition 
by alcohol is not associated with a modification of the central film drainage rate. 

Thinning rate 

When the drainage curves are compared for the successive approaches of a bubble, it may be 
seen for a given thickness during the first stage of drainage that the thinning rate is higher for the 
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Figure 7. Film thickness h and corresponding h -~/2 values vs t for the first approach of bubbles of various 
diameter: 

Dia Terminal velocity 
Bubble (mm) (m/s) 

a 0.54 0.11 
b 0.70 0.17 
c 0.78 0.19 
d 0.85 0.22 

second bounce than for the first, and higher for the third than for the second. In comparing the 
first approaches of  bubbles of  various volumes, it is seen that the thinning rate decreases with 
the rising velocity which increases with the volume• Also, it may be concluded that the higher the 
approach velocity is, the slower is the initial thinning rate. 

In figure 7, values of  h -m/2 are plotted vs t and exhibit a linear relationship during the initial stage• 
This relationship is not consistent with the classical Reynolds model based on a plane film, together 
with the lubrication approximation.  The Reynolds velocity is given by 

d h  2 F h  3 

VR~ = - -  d---t = 3 n # R  4 '  [2] 
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where 

F = total force acting on the film, 

/~ -- dynamic viscosity 

and 

Rf = film radius. 

If  the experimental law 

h - t/2 = ctt [3] 

is assumed in [2], the film radius must vary with time as 

R~ = ~ h 3/2 [4] 
Jnp~ " 

Here F = ~RZfAP, where AP is the capillary pressure, which for a bubble at a free surface (Lee & 
Hodgson 1968) is given by 

7 [5] AP = R---~ ' 

where 7 is the interfacial tension. Substituting [5] in [4], the film radius may be expressed as 

R~ = AP 
3p0t h 3/2, [6] 

implying that the film radius should decrease with the thickness during the approach. 
In the Reynolds model, the surfaces are supposed to be tangentially immobile. The 

same dependence on the film radius is given by a similar analysis, where surface mobility is 
due to the effects of surface viscosity or of bulk and surface diffusion (Manev et al. 1984). 
In contrast to the lubrication hypothesis, Marrucci (1969) and Kirkpatrick & Lockett (1974) 
neglect viscosity effects and apply the Bernoulli equation between the centre of film and its rim. 
In the case of a bubble at a free surface, they obtain the following drainage equation for a 
plane-parallel film: 

dh 2h ( 2y ,~1/2 

dt = Rff \ -~r,]  " [7] 

But use of the Bernoulli equation implies a steady flow and this assumption does not seem justified, 
as will be shown later. 

Chesters (1975, 1978), assuming a plug flow in the plane film and taking account of the bubble 
velocity, gives the following expression for the thinning rate: 

dh 87 
d t  = p V R ~ h ,  [81 

where V is the approach velocity and for two bubbles of radii RI and R2, 

Req 2 + " [9] 

Thus, for a bubble rising to a plane surface, assuming V constant and an initial thickness h0 at 
t = 0: 

t = 87 In . [10] 

This dependence is not what we observed during the first stage of drainage. We shall now 
show that [3] can be obtained by modifying the boundary conditions of Chester's (1975, 1978) 
model. 
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4. T H I N N I N G  MODEL FOR THE FIRST STAGE OF DRAI NAGE 

We consider two bubbles of equal radii R moving towards one another along the line joining 
their centres with a relative velocity V0. The hypotheses are: 

(a) The intervening film is plane-parallel• 
(b) Gravity effects can be neglected in the film flow. 
(c) The flow is axisymmetric without an azimuthal component• 
(d) The gas flow in the bubbles has no influence on the liquid flow. 
(e) The radial velocity u is constant across the film: (Ou/Oz = 0). 

The last assumption will be discussed later• The continuity and Navier-Stokes equations are in 
cylindrical coordinates [with hypothesis (c)]: 

1 O(ur) + t~w 
r Or 0z =0 ,  [11] 

o t + U - ~ r + W - ~ z  = pOr P L  L r ~  ~ / + ~ ) - 7 z 2 ]  [121 

and 

Ow Ow Ow l Op + ~_ (OZw l o w  02w'~ 
Ot + U-~r + W Oz p Oz p - -  - k~r2 + r-~-r + ~z2) ,  [13] 

where u and w are the radial and axial velocities, respectively, p is the pressure, p is the liquid density 
and # is the dynamic viscosity. 

If  L and H are characteristic lengths for the radial and axial directions, and U and W are the 
corresponding velocity scales, we may introduce the dimensionless variables: 

r z U w t" t W  
r" = - -  z '  = - -  u'  = w'  = - -  

L' H' Z'  W' =--'H 
If  the ratio of length scales is denoted e, with the continuity equation [11], we can write: 

H W 

L U 
[141 

If  P is the characteristic pressure in the film, the continuity and the Navier-Stokes equations are 
rewritten as: 

1 O(u'r')  aw'  
r '  Or ~ +~-7z,=O , [11'] 

and 

Ou' u 'Ou '  w'~3u' e2p Op' e F O ( 1  O(r'u')'~ 1 02u '-] 
OT + ~-Tr' + Oz'-- pW 2 ~3r' + ~ L ~ L ; '  ~ ) + ~ l  021 

aw'  u" OW' w" OW' P O p '  e {02w ' 1 Ow' 1 0 2 w " ~  
Ot -----7+ Or - - - z +  Oz ' =  p W 2 0 z "  ~ - ~ k O - ~ - + ; - ~ - T r ' + e  2 0 z ' : ] '  [13'] 

with the Reynolds number 

Re = - -  p W L  = p U H  
# # 

In the lubrication approximation, if L is the film radius Rf and H is the initial film thickness, 
it is assumed e <~ 1 and Re ~ 1. The characteristic pressure P can be taken as (Ivanov & Dimitrov 
1988): 

P = __#UL [15] 
/ _ i 2  • 
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Thus, [12'] becomes 

du, u, dU, ,du, 1_ [_dp, 
-~7 J- -~Tr' + W  d z ' = e R e [ _  dr" o u' l 

dr' }J" 
The asymptotic value is given by 

dp" d2u" 
- Or---- 7 + ~ = O. 

[16] 

[17] 

With the same approximation, [13'] is reduced to 

dp--=o" 
dz'  

[181 

Equations [17] and [18] constitute the classical frame for studying the drainage of viscous films. 
But the rate of drainage predicted by such an analysis is too low when compared with the 
experimental results for the collision of two bubbles or for the impact of a bubble with a free 
surface. Therefore the formulation of the film drainage must be re-examined. 

During the stage of film formation, the characteristic pressure is the capillary pressure Pc = y/R. 
The axial velocity is scaled by the relative approach velocity V0. The radial characteristic length 
L is given by the film radius R m when the bubbles are in contact. For a bubble of radius Rb resting 
in equilibrium at a free surface, Rm is given by (Princen 1963): 

RE _ 4 Apg R4" [19] 
3 ? 

In this case, it will be shown that the initial film thickness h0, [44], is of the order of 

2 2 . pVooRb 
Hi = , [20] 

Y 

if the terminal velocity V~ is taken as the relative approach velocity. 
With a Reynolds number, 

p Vo Rm 
Ref - - - ,  [21] 

# 

and a Weber number, 

We - p V°~ Rb, [22] 
7 

the Navier-Stokes equations may be written as 

Out u" Oil' , OU t •2 Op' e [- O i' 1 O(r'u')'~ 1 O2u "] 
Ot ----7-1- ~Tr'+W Oz ----S= WeOr"  b-~erL-~Tr'kr" ~ [231 

and 

Ow" Ow" w'  dW" 1 dp" e I'd2w ' 1 dw'  l dZw')  
dt--- 7 + u" ~r" + dz '  = We dz" b R e f  k ~ r  "z + -;7 ~r" + e 2 dz ,2 }" [24] 

In our experiments, Hi and Rm have the same magnitude. For example, with a bubble of radius 
Rb=0.4mm,  rising in water, the terminal velocity is 20cm/s and Rm = 68#m, Hi=  88#m, 
Ref= 13.6 and We = 0.22. Therefore, during the initial stage of drainage, taking H = h0, e is of 
the order of unity and We/Re < 1. Consequently, the viscous terms in the Navier-Stokes equations 
are of minor importance, unlike the lubrication approximation. 

We assume now that the radial velocity is uniform across the film [hypothesis (e)]. As discussed 
by Lee & Hodgson (1968), the velocity profile is determined by the tangential part of the stress 
tensor at the film surface. Neglecting the influence of the gas phase due to its low viscosity 
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[hypothesis (d)] and the effect of a surface viscosity, the surface stress balance equation is in a radial 
direction: 

(On Ow) O, [25] 
~ + ~  z=_+~/~ = Or" 

The gradient of interfacial tension is related to the variation of the surface concentration of the 
surface-active molecules. If the gradient Oy/Or is small, the film will be slightly sheared. So we can 
consider 

~7 
Or = 0 [26] 

and 

0 u  
D Oz 0, [27] 

not only at the surface but in the whole film as for a plug flow. 
The Navier-Stokes equations become 

and 

(1 a(r'u')/] 
0u, , 0 . ,  : 0r' r-' [281 Ot' + Or' = We 0r ~ + RefLar ~ )J 

e (OZw ' 1 Ow' 1 O2w"~ 
Ow' u, OW' w,3W' 1 0p'+~_er~,O__r_~_+~7..~_r,+~O~_) [29] 
0t---- 7 -t- ~ r '  + 0z' - We 0z' 

Integrating the continuity equation [11'] according to [27] and with w'(r', 0, t') = 0, we obtain 

z" O(r' u ') 
w '  = [30]  

r '  Or' 

The film being plane-parallel, for z ' =  _ h'/2, we have 

Integrating [31] with u ' =  0 at r ' =  0, 

and with [30], 

dh' h' O (r'u') 
dt' - r' Or' [31] 

r '  dh'  
u'  = ; [32] 

2h' d t '  

z '  dh'  
w' - h '  dt '  " [33] 

Substituting [32] in the Navier-Stokes equation [28] and setting 

= ½ In h', [34] 

we observe that the viscosity term disappears in the momentum equation for the radial direction: 

t (d yl = : 0p, 
r L-d-- -~-  + \ d t ' )  J - We Or'" 

[35] 

This equation was given by Chesters (1975) who integrates [35] between r '  = 0 and r '  = 1 and 
evaluates the pressure at the film border. But this integration leads to a gradient of pressures in 
the radial direction, in contradiction with the hypothesis of a plane-parallel film. On the contrary, 
we assume that the Laplace law is verified at each point of the film surface. Writing the continuity 
of the normal component of the stress tensor for a plane interface: 

pb = p ( h ) - - 2 #  (~-~)h/2 , [36] 
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where Pb is the bubble pressure. If  P0 is the pressure in the bulk liquid, 

Pb = P0 + - -  

With dimensionless variables, [36] becomes 

p ~ + 2  = p , ( h )  

2~ 

Rb 

2We dw' 

e Rer Oz' " 
If we assume Pb constant, we see that [33] and [36] imply 

Op" O. 
Or' 

Then equation [20] leads to 

795 

[36'] 

[37] 

d2~=  ( d ~ )  2 t381 
dt '2 \ d r ' ]  " 

= - V o ;  

Integrating [23] with the initial conditions 

~h = ho 

~ t=O 

or for t '  = 0: h' = 1, dh'/dt' = 1, ~ = 0, d~g/dt' = -½, we obtain 

In dimensional form, 

[39] 

where z = 2ho / Iio. 

p(r,z,t)=pb+Z--Sh ° --Z2 - ? \ h o )  

Equation [40] satisfies the observed dependence [3] during the first stage of  drainage, but initial 
conditions [39] are needed. An estimation of h0 was given by Chesters (1978), who chose h0 such 
that the pressure between two approaching spherical bubbles is of  the order of  the capillary 
pressure. He found that the pressure between two spheres of  radius R approaching with relative 
velocity V0 is on their centreline: 

prior . 
p0 = - - ~ o  (1 + p - ~ R  ) . [42] 

Then, following Chesters (1978), we have at the initial time, 

hence 

( d h )  = - V o ;  [43] 
p o = ~  and d-t ,-o 

( ) ho pV2R2 1 + [44] 
= 4 - - 7 -  p--V~oR " 

[41'] 

o r  

h = (Vo~ t + 2h0) 2" [40'] 

Substituting [32], [33] and [40] in [29] and integrating [29] with the boundary condition [36], the 
film pressure is given by 

, , 3We , 
, , o  ,] eRer(h')l/2 [41] 

4h 3 

4 
h' - - -  [40] 

(t '  + 2) 2 
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Figure 8. Comparison of experimental values of ~ with predicted values using [48]. 

For two unequally sized bubbles of radii R, and R2, Chesters (1978) showed that the acceleration 
of the reference frame, with its origin taken at the film centre, can be neglected and the thinning 
equations are the same as those for equally sized bubbles provided that R is replaced by an 
equivalent radius R~q given by [9]. 

For a bubble approaching a free surface Req = 2Rb, and if we assume that the relative velocity 
V0 is the rise velocity V~ of the bubble, we can rewrite [40'] as 

1 

x/~ = ~c(t + to), [451 

with 

and 

= 2 3 - 2/~ 
~C 2 V ~ R  b P I+P--~-~Rb 

[46] 

2h0 [47] 
to = V-"~ " 

In fact, the best fit with experimental results is obtained if the numerical coefficient 1/2 is replaced 
by 4, such that 

/1 = ~ - 2 #  " [ 4 8 ]  

V~Rb 1 +p--V--~Rb 

Comparison of the experimental values with the proposed coefficient ~, [48], are shown in figure 8 
for small bubbles in several pure liquids (water, methanol, ethanol, 2-propanol). The uncertainty 
on experimental values of e is about 15% and the agreement is very good. 
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The difference between the numerical coefficients of  [46] and [48] may be explained either by an 
initial relative velocity < Vo~ or by an initial pressure > ~/R; the first case signifying that the bubble 
decelerates before film formation. 

5. DISCU S S IO N  

The main feature of this model is to omit in the Navier-Stokes equations the term au/dz, as for 
a plug flow, and to assume there is no gradient of  pressure in the radial direction. The first 
hypothesis follows from the continuity of tangential stress at the film surface. If the influence of  
gas flow and surface viscosity are neglected, the continuity of the tangential stress for a plane 
surface is expressed as 

# = - -  = , [49] 
z=h/2 dr dc dr 

denoting by c the surfactant concentration at z = + hi2. 
If  dc/dr ~ Ac/Rm, where Ac is the concentration difference between the centre and the rim of  

the film, the order of  Ou'/dz' is given by (e2/#Vo)(dV/dc)Ac. In our experiments, the surfaces are 
clean so that the gradient Or/dr due to impurities is very small. For  the ethanol solutions 
d~,/Oc = - 2 . 1 0  -5 (N/mol) • m 2 (Butler 1932) and c is of  the order of  3.5 mol/m 3. For  a bubble rising 
with the velocity V0=20cm/s ,  if Ac ~0.1  mol/m 3 and e = 1, du'/dz' <0.01. Therefore, the 
approximation of  a plug flow seems justified initially. 

Furthermore, it may be pointed out that d~/dr = 0 is consistent with the model. If A~¢ is the 
film area found between r and r + Ar, then for a thickness variation of 6h, the variation of A~¢ is 

6 (A~)  1 ~(rfr) 6h 
. . . . . . .  [50] 

A d  r 0r h 

Thus, the stretching 6 (A~¢) does not depend on r and the surfactant concentration may be uniform 
on the film surface. 

The law h -1/2 = ctt is valid only during the first stage of drainage. Two hypotheses can explain 
the end of  the initial stage. The first is that the film thinning is related to the bubble motion: if 
the bubble dives after the bounce, the liquid flows into the film and drainage is stopped. The second 
hypothesis is the formation of a dimple, as was observed with viscous liquids by Allan et al. (1961). 
In this case, the thinning occurs at a greater rate at the rim of  the film than at the centre, and the 
liquid is trapped within a ring. 

Bouncing 

When a bubble is floating at a free surface, Lu et al. (1989) have shown that it can oscillate 
according to two fundamentally different modes: the surface mode and the volume mode. The 
surface mode is given by the vertical oscillation of the bubble; the shape remains essentially constant 
and the restoring force is due to the deformation of the free surface. The volume mode is 
characterized by radial vibration of  the bubble surface and the restoring force is provided by the 
compressibility of  the gas contained in the bubble. Furthermore, their study has shown that the 
frequency of  this second mode has the same order of  magnitude as in an unbounded liquid: 

1 [3K ~i/2 
v k p p  V , [511 

where K is the polytropic exponent of  gas. 
The periods of this mode are of  the order of  0.1 ms for the bubbles examined here. They are 

clearly shorter than the characteristic time of  drainage (1 ms) and this mode does not appear on 
the experimental curves of  film drainage. 

For  the surface mode, Lu et al. (1989) gives only an estimate of  the frequency and do not take 
into account the approach velocity of  the bubble. This mode of  oscillation has also been studied 
by Hartland et al. (1975), who calculated the numerical values of  frequencies and amplitudes for 
solid spheres and drops at a fluid-liquid interface. For  bubbles, the order of magnitude of  the 
frequency for vertical oscillations can be given by a simple model, which we present below. 
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Fir 

Figure 9. Schematic shape of  a bubble oscillating at a free surface. 

The simplified form of the bubble at the free surface is shown in figure 9. The bubble of volume 
3v is divided into two spherical zones. The curvature radius of the lower part is Rb, while that of 
the upper part is 2R b if we assume that the film pressure Pf is given by 

= e 0 ~  ~ [52] Pf = Pb -- R---b Rb' 

where Pb and P0 signify the pressure inside and outside the bubble, respectively. The volume of 
the upper part is very small and the centre of the lower sphere is taken as the centre of mass. Taking 
the origin at a distance Rb from the horizontal free surface, the equation of motion is 

d2z ~ _ dz 
m - ~  = Apg~V" - 7rR~ -~b - J - ~ '  [531 

where 

m =Cmp~l/" [54] 

is the added (virtual) mass of the bubble. 
For a sphere in an unbounded volume, Cm=0.5 and near a rigid wall Cm= 11/16 (Milne- 

Thompson 1962). Here we suppose that Cm does not depend on z. The first term on the r.h.s, of 
[53] is the buoyancy force. Neglecting the gas density, we take Apg"l/ = 4npgR~/3. 

The second term is the restoring force due to the excess of pressure acting on the film of radius 
Rf .  From elementary geometry, Rf is given approximately by 

R~ = 2RbZ f o r z > 0  

and 

R f = 0  for z <0.  

[55a] 

[55b] 

The last term of [53] is the drag force. If the drag coefficient Co is given by (Kang & Leal 1988): 

48 8 gRb 
CD = Re b - 3 V~'  [56] 

with the Reynolds number 

R e  b ~ _ _  

the friction coefficient f can be expressed by 

2p Vo~ R b 

# 

f =  12n#Rb. 

Let us introduce the dimensionless variables 

z tVoo 
Z = ~  and t"=--Rb 

The equation of motion is, thus, for Z > 0: 

d2Z gRb 3 18 dZ 
C m ~ =  V~ W---eZ Rebdt"" 

[57] 

[581 

[591 
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The equilibrium position is given by 

gRbWe 2pgR~ CoWe 
z0=-3-  - = 

The corresponding film radius Rm is the same as that given by [19]: 

R 2 m -  "~Z 
0 -  

Thus, the equation of motion [59] becomes 

d:Z 3 18 dZ 
Cm dt"2 = We (Z0 - Z)  

Denoting 

Reb dt" " 

[60] 

[61] 

[62] 

Dimpling 

Dimple formation has been chiefly studied in the frame of the lubrication approximation (Ivanov 
& Dimitrov 1988) or at least for the limiting case of small inertia: see Chi & Leal (1989), Ascoli 
et al. (1990), Pozrikidis (1990) and Yiantsios & Davis (1990) for drops. Shopov et aL (1990) have 

3 9 
ro2 = _ _  fl = _ _  f~: = roE _ f12, [63] 

CmWe' CmReb' 

and with the initial conditions t" = 0: Z = 0, dZ/d t "  = 1, d2Z/dt"2 = 0, the solution of [62] is, for 
Z > 0 :  

0)2 - -  2 f l2  . . . . . .  -I 
Z1 (t") = e x p ( -  fit") -- Zo cos(fit") -t ~ - ~  sm(•t ) / +  Z0. [64] 

If, as in our experiments, f12,~ ro:, the pseudo-period is 

T~' = 2~ /CmWe [65] 
~/ 3 

or in dimensional form, 

Ti = ~ 2 n C ~  :'1/" • [65'] 

With Cm = 11/16, the bubble is emerging during 

For diameters varying between 0.54 and 0.85 ram, Tt/2 takes place between 1 and 2 ms. This is 
in accordance with the results shown in figure 7. 

The bubble leaves the free surface at t " =  r[, given by Zt (t~') = 0 with the velocity V~'. Then it 
dives beneath the free surface and the equation of motion is, for Z > 0: 

18 (1-  
Cm d - ~  = ~ \ ~ - ;  . [661 

According to the initial conditions, the solution of [66] is 

1 - _ ; "  
ZE(t") = ' {exp[ - 2fl(t" - t'()] - 1} + t " -  t'(. [67] 

The bubble returns to the surface at t" = t;', given by Z2(t;') = 0. With V'I' ~ - 1, the order of 
magnitude of t~' - t~' is l/ft. For a bubble with a radius of 0.4 mm, the computed value of t;' - t'[ 
is 25 ms, while the experimental value is about 15 ms (figure 3). Therefore, this model is only an 
approximation but it shows that the lifetime of the film t'( is short in comparison with the time 
of one oscillation t;'. Consequently, the film drainage should be studied taking into account the 
bubble rebound. 
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Figure 10. Comparison of the measured thicknesses h* for a bubble of 0 . 54mmdi a  (terminal vel- 
ocity = 0.11 m/s) with the values computed by Chesters & Hofman (1982) at the film centre and with [70]. 

The origin of time is taken at (h*)-~/2 = 4 for the three curves. 

examined numerically a bubble approaching a rigid wall. The difficulty encountered in these works 
lies in coupling the small-scale film thinning process and the long-scale problem of the bubble (or 
drop) motion. It is often stated that the dimpling is related to the no-slip condition at the film 
surface. However, Yiantsios & Davis (1990) have shown that for a drop approaching a free surface, 
a dimple is always formed at sufficient long times. 

Chesters & Hofman (1982) have examined numerically the case of the film formation during the 
collision of two bubbles. They assume uniform velocity across the film and full mobility of the 
surface. Therefore, their analysis is very similar to that of the analytical model presented here 
(section 4). Dimple formation is also observed. They showed that if the viscosity is neglected, it 
is possible to obtain a universal solution which does not depend on the Weber number (provided 
this is small). Their governing equations are only a function of the following variables: 

r h u W e  ~/2 tVo~ 
r * = - -  h * = - - ,  u * = - -  t * = - -  [68] 

R~qWe 1/2' R~We V~ ' R e q W e  ' 

with We = p V2Req/~. Denoting 6 = ho/Req , with these variables, the drainage law [40] is rewritten 
as: 

1 / W e ' ~  3/2 / W e ' ~  1/2 
(h*)-l/2=~t--~-) t* +t--~- ) . [69] 
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Hence this expression does not depend on We if 6 ocWe. This is verified by [44], which gives for 
the inviscid case h* = 6~We = 1/4. For a bubble approaching a free surface (R~ = 2Rb), using [48], 
a better fit with the experimental results is obtained taking h* = 1/16. Then the numerical results 
of Chesters & Hofman (1982) can be compared with 

(h *)-,/2 = 32t * + 4. [70] 

The onset of dimpling is predicted, by these authors, to occur at about k* = 10 -2, corresponding 
to 0.5, 2, 3 and 5 #m for the four bubbles denoted a, b, e and tl, respectively, in figure 7. Except 
for the smaller bubble, the dimple should already be established when the thickness measurements 
start. Hence, from this simulation, it seems that the end of the initial stage of drainage is not due 
to a dimple formation. 

In figure 10, the thickness at the film centre computed by Chesters and Hofman (1982) is 
compared with the experimental values and with [70] for the smaller bubble a. The accordance with 
the experimental results is very satisfactory up to the last computed value h* = 6.10 -3. However, 
for this value, the thickness at the rim is given as h* = 4.8 • 10 -4 (h = 23 nm). This is the order of 
magnitude of the rupture thickness and in reality the drainage continues as far as h* = 1.6- 10 -3 
(h = 80 #m) at the film centre. The comparison with the other bubbles also shows that the drainage 
is observed for longer than predicted by the simulation. Furthermore, this simulation does not take 
into account the bubble deceleration. Therefore, the end of the initial phase of drainage is not yet 
well-explained and a more accurate analysis of the drainage at the rim is needed to understand the 
rupture. 

6. CONCLUSION 

The examination of the drainage curves for distilled water and alcoholic solutions shows that 
the inhibition of coalescence by alcohol cannot be explained by a slower rate of thinning in the 
central region of the film. The addition of alcohol acts to prevent the film rupture. This rupture 
does not occur when the thickness at the film center is a minimum, but later when liquid flows into 
the film. The rupture is abrupt; we do not observe growth of instabilities beforehand. 

For the first stage of drainage, we propose a modification of the Chesters (1975) model which 
gives a good agreement with the experimental drainage curves. But further development of the 
theory is needed to explain the effect of alcohol on the film rupture. 
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